Virtual fungal genomics laboratory of Irina S. Druzhinina and Feng Cai
Cai F, Zhao Z, Gao R, Chen P, Ding M, Jiang S, et al. (2021) The pleiotropic functions of intracellular hydrophobins in aerial hyphae and fungal spores . PLoS Genet 17(11): e1009924. https://doi.org/10.1371/journal.pgen.1009924
Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins – hydrophobins (HFBs) – that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales,